Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hugo Serrano, ${ }^{\text {a }}$ Jairo Quiroga, ${ }^{\text {a }}$ Justo Cobo, ${ }^{\text {b }}$ John N. Low ${ }^{\text {c }}$ and Christopher Glidewell ${ }^{\mathbf{d} *}$

${ }^{\text {a }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ${ }^{\mathbf{b}}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ${ }^{\text {c Department of Chemistry, }}$ University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\text {d }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.110$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

11-(4-Chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-benzo[f]pyrazolo[3,4-b]quinoline

Molecules of the title compound, $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{ClN}_{3}$, are linked by two independent $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds into chains of edge-fused rings.

Comment

Pyrazolo[3,4-b]quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator and enzyme-inhibitory activity (Quiroga et al., 2001). We have recently focused on the synthesis of fused heterocyclic systems containing the pyrazolo[3,4-b]quinoline moiety using multicomponent cyclocondensation reactions under solvent-free conditions. We describe here the molecular and supramolecular structure of the title compound, (I), prepared using a three-component cyclocondensation involving 5-amino-3-methyl-1-phenylpyrazole, 2-tetralone and 4-chlorobenzaldehyde under solvent-free microwave irradiation.

Within the pyridine-type ring, the $\mathrm{C}-\mathrm{N}$ bond lengths (Table 1) are very close to the mean value of $1.337 \AA$ for bonds of this type (Allen et al., 1987), and there is very strong bond fixation in the five-membered ring. The pyridine ring and the benzene ring containing atom C 1 are not coplanar, and their planes make a dihedral angle of $25.5(2)^{\circ}$. The carbocylic ring containing atoms C5 and C6 accordingly adopts a screw-boat conformation (Evans \& Boeyens, 1989), with total puckering amplitude $Q=0.537$ (2) \AA, and ring-puckering parameters $\theta=$ 70.5 (2) ${ }^{\circ}$ and $\varphi=92.5$ (2) ${ }^{\circ}$ (Cremer \& Pople, 1975); the idealized values of the angular parameters for a screw-boat conformer are $\theta=67.5^{\circ}$ and $\varphi=(60 k+30)^{\circ}$. The dihedral angle between the pyrazole-type ring and aryl ring C81-C86 is 28.1 (2) ${ }^{\circ}$, whereas that between the pyridine-type ring and aryl ring $\mathrm{C} 111-\mathrm{C} 116$ is $70.1(2)^{\circ}$, possibly as a consequence of repulsive interactions between the H atoms bonded to C 112 and C116 and those bonded to C101 and C1, respectively.

Received 9 March 2005 Accepted 14 March 2005 Online 25 March 2005

Figure 1
The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Stereoview of part of the crystal structure of compound (I), showing the formation of a chain of edge-fused rings along [101]. For the sake of clarity, the H atoms not involved in these motifs have been omitted.

The molecules of (I) are linked by two independent C $\mathrm{H} \cdots \pi$ (arene) hydrogen bonds into a chain of edge-fused rings. Aryl atom C113 in the molecule at (x, y, z) acts as donor to the phenyl ring C81-C86 in the molecule at $(-x, 1-y,-z)$, so forming a centrosymmetric ring, centred at $\left(0, \frac{1}{2}, 0\right)$. In a similar way, atom C 115 at (x, y, z) acts as donor to the fused aryl ring, containing C 1 , in the molecule at $(1-x, 1-y, 1-z)$, so generating a second centrosymmetric ring, centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Propagation by inversion of these two interactions then generates a chain of edge-fused centrosymmetric rings running parallel to the [101] direction (Fig. 2). There are no direction-specific interactions between adjacent chains: $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, and aromatic $\pi-\pi$ stacking interactions are all absent from the structure of (I).

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenylpyrazole (173 mg , 1.0 mmol), 2-tetralone ($146 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 4-chlorobenzaldehyde
($140.6 \mathrm{mg}, 1.0 \mathrm{mmol}$) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 4 min at 600 W . The reaction mixture was then extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol/dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. Pale-green crystals (m.p. 467 K , yield 58%). MS: (30 eV) $m / z(\%) 279\left(100, M^{+}\right), 264$ (27).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{ClN}_{3}$
$M_{r}=421.91$
Triclinic, $P \overline{1}$
$a=7.1270(1) \AA \AA^{\circ}$
$b=12.6300(4) \AA$
$c=13.2847(4) \AA$
$\alpha=107.3380(13)^{\circ}$
$\beta=103.6230(17)^{\circ}$
$\gamma=101.4230(18)^{\circ}$
$V=1061.98(5) \AA^{\circ}$

$$
D_{x}=1.319 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Data collection

Bruker-Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.906, T_{\text {max }}=0.984$
21625 measured reflections

$$
Z=2
$$

Mo $K \alpha$ radiation
Cell parameters from 4871
reflections
$\theta=3.0-27.6^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-}$
$T=120$ (2) K
Plate, pale green
$0.53 \times 0.20 \times 0.08 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.110$
$S=1.08$
4871 reflections
281 parameters
H-atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.054 P)^{2}\right. \\
+0.2795 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1

Selected bond lengths (\AA).

C $6 A-\mathrm{N} 7$	$1.3336(18)$	$\mathrm{C} 10-\mathrm{C} 10 A$	$1.436(2)$
$\mathrm{N} 7-\mathrm{C} 7 A$	$1.3415(19)$	$\mathrm{C} 10 A-\mathrm{C} 11$	$1.4055(19)$
$\mathrm{C} 7 A-\mathrm{N} 8$	$1.3730(17)$	$\mathrm{C} 11-\mathrm{C} 11 A$	$1.403(2)$
$\mathrm{N} 8-\mathrm{N} 9$	$1.3791(17)$	$\mathrm{C} 11 A-\mathrm{C} 6 A$	$1.4324(19)$
$\mathrm{N} 9-\mathrm{C} 10$	$1.3190(19)$	$\mathrm{C} 7 A-\mathrm{C} 10 A$	$1.398(2)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of ring C81-C86, and Cg 2 is the centroid of ring C1-C4/ C4A/C11B.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C113-H113 $\cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.95	2.65	$3.5214(16)$	152
${\text { C115-H115 } \cdots \mathrm{Cg}^{2 i}}^{\text {i }}$	0.95	2.90	$3.6403(17)$	136

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 1-y, 1-z$.

All H atoms were located in difference maps in fully ordered sites; they were then treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic), 0.98 (methyl) or $0.99 \AA\left(\mathrm{CH}_{2}\right)$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl group.

organic papers

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. \& Low, J. N. (2001). Tetrahedron, 57, 6947-6953.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

